Effects of Repeated Ropinirole Treatment on Phencyclidine-Induced Hyperlocomotion, Prepulse Inhibition Deficits, and Social Avoidance in Rats.
نویسندگان
چکیده
Phencyclidine (PCP), a noncompetitive N-methyl d-aspartate (NMDA) receptor antagonist, provides the most complete pharmacologic model of schizophrenia in humans and animals. Acute PCP causes hyperlocomotion, disrupts prepulse inhibition (PPI), and increases social avoidance in rats. We have previously shown that repeated treatment with the dopamine (DA) D2-like receptor agonists, quinpirole or ropinirole, prevents agonist-induced PPI disruption. In the present study, we examined whether repeated ropinirole treatment similarly attenuates the effects of PCP in a more complete model of schizophrenia symptoms and examined the effect of repeated D2-like agonist treatment on locomotion, PPI, and social interaction after acute PCP challenge. The acute effect of PCP (3.0 or 6.0 mg/kg) on locomotor activity was examined to establish a minimum effective dose. Thereafter, the effect of PCP challenge (3.0 mg/kg) on locomotor activity, PPI, and social interaction was assessed in adult male rats before or 7-10 days after termination of repeated daily treatment with ropinirole (0.1 mg/kg) or saline vehicle (0.1 ml/kg) for 28 days. Repeated ropinirole treatment attenuates PCP-induced hyperlocomotion, PPI deficits, and social avoidance. These findings suggest that repeated ropinirole treatment might affect a final common pathway that is vulnerable to both PCP- and dopamine agonist-induced behavioral disruption, thereby providing an alternative approach to block the effects of PCP.
منابع مشابه
Repeated effects of the neurotensin receptor agonist PD149163 in three animal tests of antipsychotic activity: assessing for tolerance and cross-tolerance to clozapine.
Neurotensin is an endogenous neuropeptide closely associated with the mesolimbic dopaminergic system and shown to possess antipsychotic-like effects. In particular, acute neurotensin receptor activation can inhibit conditioned avoidance response (CAR), attenuate phencyclidine (PCP)-induced prepulse inhibition (PPI) disruptions, and reverse PCP-induced hyperlocomotion. However, few studies have ...
متن کاملRepeated administration of aripiprazole produces a sensitization effect in the suppression of avoidance responding and phencyclidine-induced hyperlocomotion and increases D<sub>2</sub> receptor-mediated behavioral function
The present study investigated how repeated administration of aripiprazole (a novel antipsychotic drug) alters its behavioral effects in two behavioral tests of antipsychotic activity and whether this alteration is correlated with an increase in dopamine D2 receptor function. Male adult Sprague-Dawley rats were first repeatedly tested with aripiprazole (3, 10 and 30 mg/kg, subcutaneously (sc)) ...
متن کاملIptakalim Preferentially Decreases Nicotine-induced Hyperlocomotion in Phencyclidine-sensitized Rats: A Potential Dual Action against Nicotine Addiction and Psychosis
OBJECTIVE Iptakalim is a putative ATP-sensitive potassium (K(ATP)) channel opener. It is also a novel nicotinic acetylcholine receptor (nAChR) blocker and can antagonize nicotine-induced increase in dopamine release in the nucleus accumbens. Our recent work also shows that iptakalim exhibits a clozapine-like atypical antipsychotic profile, indicating that iptakalim may possess a dual action aga...
متن کاملRepeated antipsychotic treatment progressively potentiates inhibition on phencyclidine-induced hyperlocomotion, but attenuates inhibition on amphetamine-induced hyperlocomotion: relevance to animal models of antipsychotic drugs.
Clinical observations indicate that antipsychotic action starts early and increases in magnitude with repeated treatment. Animal models that faithfully capture this time course of action are few. Inhibition of hyperlocomotion induced by amphetamine or phencyclidine has been widely used as a screening tool for the antipsychotic activity of a drug. We thus investigated whether repeated antipsycho...
متن کاملEffects of the Antioxidant Sulforaphane on Hyperlocomotion and Prepulse Inhibition Deficits in Mice after Phencyclidine Administration
OBJECTIVE Accumulating evidence suggests that oxidative stress plays a role in the pathophysiology of schizophrenia and that the potent antioxidants may be potential therapeutic drugs for schizophrenia. This study was undertaken to examine the effects of the potent antioxidant sulforaphane (SFN), found in cruciferous vegetables, on behavioral abnormalities (e.g., hyperlocomotion and prepulse in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 361 1 شماره
صفحات -
تاریخ انتشار 2017